2024年 大学院理工学研究科 シラバス - 電子工学専攻
設置情報
科目名 | パターン認識特論 | ||
---|---|---|---|
設置学科 | 電子工学専攻 | 学年 | 1年 |
担当者 | 西脇 大輔 | 履修期 | 後期 |
単位 | 2 | 曜日時限 | 水曜4 |
校舎 | 船橋 | 時間割CD | J34A |
クラス | |||
その他 | 実務経験のある教員による授業科目 |
概要
学修到達目標 | 誌面上の文字や文書、実世界中の看板や標識などを題材とし、パターン認識の基礎から実際の応用までを修得する。 |
---|---|
授業形態及び 授業方法 |
対面授業 教室での講義、論文、文献を用いた輪講形式の討論 担当者のメーカにおけるこの分野での長年にわたる研究開発、製品開発の実務経験を基に、実応用に際し教科書では取り上げられない問題も含め、その解決方法について豊富な例やエピソードをまじえて解説する。 |
準備学習(予習・ 復習等)の内容・ 受講のための 予備知識 |
課題実習では画像データを処理するので、プログラミング基礎、もしくは関連アプリケーションの利用経験は、課題レポート作成に必須。 数理解析、多変量解析や画像処理の基礎知識とそれらの領域におけるプログラミング経験があるとよい。 画像工学特論を併せて受講すると、画像入力から画像認識まで、パターン認識の主要プロセスを体系的に学修できる。 |
授業計画
第1回 | パターン認識の概論解説を理解しパターンの基本3ステップが説明できるようになる。 | 【事前学修】テキスト、文献等で授業内容の予習と準備を行う。 【事後学修】テキスト、文献等で授業内容についての復習を行う。 | 【事前学修】2時間 【事後学修】2時間 |
---|---|---|---|
第2回 | 統計的パターン分類とパターン認識の関係性において、統計がパターン認識に重要な役割を担っていることが説明できるようになる。 | 【事前学修】テキスト、文献等で授業内容の予習と準備を行う。 【事後学修】テキスト、文献等で授業内容についての復習を行う。 | 【事前学修】2時間 【事後学修】2時間 |
第3回 | ベイズの理論と識別関数について学修し、ベイズの定理について説明できるようになる。 | 【事前学修】テキスト、文献等で授業内容の予習と準備を行う。 【事後学修】テキスト、文献等で授業内容についての復習を行う。 | 【事前学修】2時間 【事後学修】2時間 |
第4回 | ベイズ決定とその応用 1:事後確率とベイズ則について学修し、関係性が説明できるようになる。 | 【事前学修】テキスト、文献等で授業内容の予習と準備を行う。 【事後学修】テキスト、文献等で授業内容についての復習を行う。 | 【事前学修】2時間 【事後学修】2時間 |
第5回 | ベイズ決定とその応用 2:ベイズの定理に確率分布モデルを導入したパラメトリックなアプローチについて学修し、判別関数を導出できるようになる。 | 【事前学修】テキスト、文献等で授業内容の予習と準備を行う。 【事後学修】テキスト、文献等で授業内容についての復習を行う。 | 【事前学修】2時間 【事後学修】2時間 |
第6回 | ベイズ決定とその応用 3:ベイズの定理に確率分布モデルを導入したパラメトリックなアプローチを応用できるようになる。 | 【事前学修】テキスト、文献等で授業内容の予習と準備を行う。 【事後学修】テキスト、文献等で授業内容についての復習を行う。 | 【事前学修】2時間 【事後学修】2時間 |
第7回 | ニューラルネットワークと非線形判別を学修し、ニューラルネットワークの学習モデルについて説明できるようになる。 | 【事前学修】テキスト、文献等で授業内容の予習と準備を行う。 【事後学修】テキスト文献等で授業内容についての復習を行う。 | 【事前学修】2時間 【事後学修】2時間 |
第8回 | パターン認識と多変量解析について学修し、多変量解析をパターン認識に応用できるようになる。 | 【事前学修】テキスト、文献等で授業内容の予習と準備を行う。 【事後学修】テキスト、文献等で授業内容についての復習を行う。 | 【事前学修】2時間 【事後学修】2時間 |
第9回 | クラスタリング手法について学修し、パターン認識に応用できるようになる。 | 【事前学修】テキスト、文献等で授業内容の予習と準備を行う。 【事後学修】テキスト、文献等で授業内容についての復習を行う。 | 【事前学修】2時間 【事後学修】2時間 |
第10回 | K-L展開について学修し、パターン認識に応用できるようになる。 | 【事前学修】テキスト、文献等で授業内容の予習と準備を行う。 【事後学修】テキスト、文献等で授業内容についての復習を行う。 | 【事前学修】2時間 【事後学修】2時間 |
第11回 | 判別関数、判別分析について学修し、パターン認識に応用できるようになる。 | 【事前学修】テキスト、文献等で授業内容の予習と準備を行う。 【事後学修】テキスト、文献等で授業内容についての復習を行う。 | 【事前学修】2時間 【事後学修】2時間 |
第12回 | 実際の文字認識への応用(実習の準備):独自のアルゴズムが提案できるようになる。 | 【事前学修】テキスト、文献、データベース等で実習の準備を行う。 【事後学修】実習ついての復習を行う。 | 【事前学修】2時間 【事後学修】2時間 |
第13回 | 文字認識の実習(各自プログラミング)と討論により、認識精度の評価ができるようになる。 | 【事前学修】資料、データベース等でプログラム作成の準備を行う。 【事後学修】作成したプログラムにデータを入力し、認識精度を測定して考察する。 | 【事前学修】2時間 【事後学修】2時間 |
第14回 | 実習結果の発表と討論1 グループ1: パターン認識に関するプレゼンができるようになる。 | 【事前学修】実習結果発表の準備を行う。 【事後学修】発表時の討議内容、コメントを踏まえて報告書を作成する。 | 【事前学修】2時間 【事後学修】2時間 |
第15回 | 実習結果の発表と討論2 グループ2:パターン認識に関するプレゼンができるようになる。 | 【事前学修】実習結果発表の準備を行う。 【事後学修】発表時の討議内容、コメントを踏まえて報告書を作成する。 | 【事前学修】2時間 【事後学修】2時間 |
その他
教科書 | |
---|---|
参考資料コメント 及び 資料(技術論文等) |
森 俊二 『エレクトロニクス文庫 文字・図形認識技術の基礎[ISBN:978-4274030185]』 オーム社
橋本新一郎 『文字認識概論』 オーム社 1982年
麻生英樹, 津田宏冶, 村田昇 『パターン認識と学習の統計学[978-4000068468]』 岩波書店
Keinosuke Fukunaga, Introduction to Statistical Pattern Recognition, SecondEdition[0122698517], Academic Press, Inc., 1990
Richard O. Duda, Peter E. Hart, David G. Stork, 監訳 尾上守夫 『パターン識別[78-4915851247]』 アドコムメディア 第4版
資料を配布
|
成績評価の方法 及び基準 |
通常授業における積極的な質疑、ディスカッション(10)、実習課題レポート(50)および課題プレゼンテーション(40) 実習課題レポート提出、課題プレゼンテーションの両者を必須とし、一方だけでは成績評価しない。 |
質問への対応 | 授業終了後に教室(またはメール, オンライン)で質問を受け付ける |
研究室又は 連絡先 |
応用情報工学科/情報科学専攻 西脇 大輔(船橋校舎2号館212室) nishiwaki.daisuke@nihon-u.ac.jp |
オフィスアワー |
水曜 船橋 12:10 ~ 12:40
|
学生への メッセージ |
パターン認識を応用した製品において、実用に耐えうる性能を実現するためには、数理基礎に基づいたスマートなアルゴリズム設計と十分なデータベースが必要と言われています。一方、実際の運用にあたっては、個別の運用環境に即した調整やチューニングが欠かせないのも事実です。本科目では教科書的な学習に留まらず、後半では文字データを使った実習を通して「ものづくり」を体験します。文字の世界は限定的ですが、その分見通しが良く、解析しやすいので、そこでの知見はパターン認識、画像認識・処理などの関連研究に役立ちます。 |