2021年 理工学部 シラバス - 教養教育・外国語・保健体育・共通基礎
設置情報
科目名 | 微分方程式Ⅰ | ||
---|---|---|---|
設置学科 | 一般教育 | 学年 | 2年 |
担当者 | 武村 一雄 | 履修期 | 前期 |
単位 | 2 | 曜日時限 | 金曜6 |
校舎 | 駿河台 | 時間割CD | T56E |
クラス |
概要
学修到達目標 | 1階微分方程式と2階線形微分方程式解法を理解し,解くことができる. |
---|---|
授業形態及び 授業方法 |
「オンデマンド型授業」 CSTポータルII および Google form を利用して,オンデマンド型授業を行う。 |
履修条件 | 微分積分学Ⅰ・Ⅱを習得していることが望ましい. |
授業計画
第1回 | 教科書,単位取得に係わる説明およびこれからの授業の進め方について説明する. 微分方程式入門 微分方程式とは何かを説明し、微分方程式を解くのに必要な微分や不定積分を復習する. 【事前学習】 シラバスの内容を確認の上,授業に臨むこと.(120分) 【事後学習】 本講義に必要になる高校の知識を学⽣間で議論・復習し,次回以降の授業に向け微分積分学の理解を深めておくこと.(120分) |
---|---|
第2回 | 変数分離形微分方程式① 変数分離形と呼ばれる最も基本的な微分方程式の一般解を求める方法を習得する. 【事前学習】 「変数分離形」というキーワードを本やインターネットを利用し事前に調べ,理解できない箇所を質問できるようまとめておくこと.(120分) 【事後学習】 本時の内容について学⽣間で議論・復習し理解を深める.必要であれば,本やインターネットを利用し,学生自らで発展的内容を学習する.(120分) |
第3回 | 変数分離形微分方程式② 前回の内容を踏まえて,変数分離形微分方程式の初期値問題の解を求める. 【事前学習】 「初期値問題」というキーワードを本やインターネットを利用し事前に調べ,理解できない箇所を質問できるようまとめておくこと.(120分) 【事後学習】 本時の内容について学⽣間で議論・復習し理解を深める.必要であれば,本やインターネットを利用し,学生自らで発展的内容を学習する.(120分) |
第4回 | 同次形微分方程式 同次形を理解し,変数変換によって変数分離形に変形して解く方法を習得する. 【事前学習】 「同次形」というキーワードを本やインターネットを利用し事前に調べ,理解できない箇所を質問できるようまとめておくこと.(120分) 【事後学習】 本時の内容について学⽣間で議論・復習し理解を深める.必要であれば,本やインターネットを利用し,学生自らで発展的内容を学習する.(120分) |
第5回 | 1階線形微分方程式① 定数変化法を利用して,1階線形微分方程式の一般解を求める方法を習得する. 【事前学習】 「定数変化法」というキーワードを本やインターネットを利用し事前に調べ,理解できない箇所を質問できるようまとめておくこと.(120分) 【事後学習】 本時の内容について学⽣間で議論・復習し理解を深める.必要であれば,本やインターネットを利用し,学生自らで発展的内容を学習する.(120分) |
第6回 | 1階線形微分方程式② 前回同様に,定数変化法を利用して,1階線形微分方程式の一般解を求める. 【事前学習】 「定数変化法」というキーワードを本やインターネットを利用し事前に調べ,理解できない箇所を質問できるようまとめておくこと.(120分) 【事後学習】 本時の内容について学⽣間で議論・復習し理解を深める.必要であれば,本やインターネットを利用し,学生自らで発展的内容を学習する.(120分) |
第7回 | 1階線形微分方程式③ 前回までの内容を踏まえて,1階線形微分方程式の初期値問題の解を求める. また前回同様に,定数変化法を利用して,1階線形微分方程式の一般解を求める. 【事前学習】 「1階線形微分方程式の初期値問題」というキーワードを本やインターネットを利用し事前に調べ,理解できない箇所を質問できるようまとめておくこと.(120分) 【事後学習】 本時の内容について学⽣間で議論・復習し理解を深める.必要であれば,本やインターネットを利用し,学生自らで発展的内容を学習する.(120分) |
第8回 | 1階線形微分方程式④ 前回同様に,定数変化法を利用して,1階線形微分方程式の一般解を求める. 【事前学習】 「1階線形微分方程式の一般解」というキーワードを本やインターネットを利用し事前に調べ,理解できない箇所を質問できるようまとめておくこと.(120分) 【事後学習】 本時の内容について学⽣間で議論・復習し理解を深める.必要であれば,本やインターネットを利用し,学生自らで発展的内容を学習する.(120分) |
第9回 | 完全微分形微分方程式 完全微分形と呼ばれる方程式を解く方法を習得する. 【事前学習】 「完全微分形」というキーワードを本やインターネットを利用し事前に調べ,理解できない箇所を質問できるようまとめておくこと.(120分) 【事後学習】 本時の内容について学⽣間で議論・復習し理解を深める.必要であれば,本やインターネットを利用し,学生自らで発展的内容を学習する.(120分) |
第10回 | 定数係数2階同次線形微分方程式① 定数係数の2階同次線形微分方程式の一般解の公式を覚えて,方程式を解く. 【事前学習】 「定数係数2階同次線形微分方程式」というキーワードを本やインターネットを利用し事前に調べ,理解できない箇所を質問できるようまとめておくこと.(120分) 【事後学習】 本時の内容について学⽣間で議論・復習し理解を深める.必要であれば,本やインターネットを利用し,学生自らで発展的内容を学習する.(120分) |
第11回 | 定数係数2階同次線形微分方程式② 前回の内容を踏まえて,定数係数2階同次線形微分方程式の一般解に関する問題を解く. 【事前学習】 「定数係数2階同次線形微分方程式の例題」というキーワードを本やインターネットを利用し事前に調べ,理解できない箇所を質問できるようまとめておくこと.(120分) 【事後学習】 本時の内容について学⽣間で議論・復習し理解を深める.必要であれば,本やインターネットを利用し,学生自らで発展的内容を学習する.(120分) |
第12回 | 定数係数2階同次線形微分方程式③ 前回までの内容を踏まえて,定数係数の2階同次線形方程式の初期値問題の解を求める. 【事前学習】 「定数係数2階同次線形微分方程式の初期値問題」というキーワードを本やインターネットを利用し事前に調べ,理解できない箇所を質問できるようまとめておくこと.(120分) 【事後学習】 本時の内容について学⽣間で議論・復習し理解を深める.必要であれば,本やインターネットを利用し,学生自らで発展的内容を学習する.(120分) |
第13回 | 定数係数2階同次線形微分方程式④ ロンスキー行列式を定義し,具体的な関数に対してロンスキー行列式を求める. また,ロンスキー行列式を用いて,2つの関数が1次独立か1次従属かを判定する. 【事前学習】 「ロンスキー行列」というキーワードを本やインターネットを利用し事前に調べ,理解できない箇所を質問できるようまとめておくこと.(120分) 【事後学習】 本時の内容について学⽣間で議論・復習し理解を深める.必要であれば,本やインターネットを利用し,学生自らで発展的内容を学習する.(120分) |
第14回 | 定数係数2階同次線形微分方程式⑤ 前回までの内容を踏まえて,定数係数2階同次線形微分方程式の初期値問題に関する問題を解く. 【事前学習】 「ロンスキー行列と微分方程式」というキーワードを本やインターネットを利用し事前に調べ,理解できない箇所を質問できるようまとめておくこと.(120分) 【事後学習】 本時の内容について学⽣間で議論・復習し理解を深める.必要であれば,本やインターネットを利用し,学生自らで発展的内容を学習する.(120分) |
第15回 | 総復習 【事前学習】 本時の授業までの内容を学⽣間で議論・復習し,理解できていなかった箇所を質問できるようにまとめておくこと.(120分) 【事後学習】 これまでの学修内容について学⽣間で議論・復習し理解を深める.必要であれば,本やインターネットを利用し,学生自らで発展的内容を学習する.(120分) |
その他
教科書 |
長崎憲一・中村正彰・横山利章 『明解 微分方程式 改訂版』 培風館
|
---|---|
参考書 | |
成績評価の方法 及び基準 |
成績評価の配分は,レポート(60%),演習課題(40%)です. |
質問への対応 | CSTポータルⅡの「Q&A」機能及び「掲示板」機能を利用して質問してください。 |
研究室又は 連絡先 |
駿河台校舎タワー・スコラ11階1114室 takemura.kazuoアットマークnihon-u.ac.jp |
オフィスアワー |
金曜 船橋 12:40 ~ 13:10 8号館4階845B
|
学生への メッセージ |
熱意を持って取り組むことを期待します. |